Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

July 2012
Bangkok, Thailand

Cosimo Beverelli and Nadia Rocha
(World Trade Organization)
Content

a) Basic regression in Stata (see “ols.do”)
b) Panel data regressions in Stata (see “panel.do”)
a) Basic regression in Stata

• Stata’s regress command runs a simple OLS regression
 • *Regress depvar indepvar1 indepvar2, options*

• Always use the option robust to ensure that the covariance estimator can handle heteroskedasticity of unknown form

• Usually apply the cluster option and specify an appropriate level of clustering to account for correlation within groups

• Rule of thumb: apply cluster to the most aggregated level of variables in the model
 • Example: In a model with data by city, state, and country, cluster by country
b) Panel data regressions in Stata

- Fixed effects (within) estimation
- Brute force OLS
- LSDV
- Random effects
- Testing for fixed vs. random effects
Fixed effects (within) estimation

- A variety of commands are available for estimating fixed effects regressions
- The most efficient method is the fixed effects regression (within estimation), \texttt{xtreg}
- Stata’s \texttt{xtreg} command is purpose built for panel data regressions
- Use the \textit{fe} option to specify fixed effects
- Make sure to set the panel dimension before using the \texttt{xtreg} command, using \texttt{xtset}
- For example:
 - \texttt{xtset countries} sets up the panel dimension as countries
 - \texttt{xtreg depvar indepvar1 indepvar2 \ldots, fe} runs a regression with fixed effects by country
- Hint: \texttt{xtset} cannot work with string variables, so use (e.g.) \texttt{egen countries = group(country)} to convert string categories to numbers
Fixed effects (within) estimation (ct’d)

- As with regress, always specify the robust option with *xtreg*

- *xtreg, robust* will automatically correct for clustering at the level of the panel variable (firms in the previous example)

- Note that *xtreg* can only include fixed effects in one dimension. For additional dimensions, enter the dummies manually (see slide 8)
Brute force OLS

• The fixed effects can enter as dummies in a standard regression (brute force OLS)
 • `Regress depvar indepvar1 indepvar2 ... dum1 dum2, options`
 • Specify `dum*` to include all dummy variables with the same stem

• Stata automatically excludes one dummy if a constant is retained in the model

• With the same clustering specification, results should be identical between `regress` with dummy variables and `xtreg, fe`
Brute force OLS (ct’d)

- To create dummy variables based on categories of another variable, use the tabulate command with the `gen()` option.

- For example:
 - `quietly tabulate country, gen(ctr_y_dum_)`
 - Will produce `ctr_y_dum_1`, `ctr_y_dum_2`, etc. automatically.
 - Then `regress depvar indepvar1 indepvar2 ... ctry_dum_*`, `robust cluster()`.

- Or you can use the `i.varname` command to creates dummies.
 - `regress depvar indepvar1 indepvar2 ... i.country`, `robust cluster()`.
LSDV

- The least-squares dummy variable (LSDV) estimator estimates the model without the within transformation and with the inclusion of N individual dummy variables
 - `areg depvar indepvar1 indepvar2 ... , absorb(varname) robust cluster()`
 - where `varname` is the categorical variable to be absorbed
Random effect estimation

- By specifying the `re` option, `xtreg` can also estimate random effects models
 - `xtreg depvar indepvar1 indepvar2 ..., re vce(robust)`

- As for the fixed effects model, you need to specify `xtset` first
 - `xtset countries`
 - `xtreg depvar indepvar1 indepvar2 ..., robust re`
 - Runs a regression with random effects by country

- Fixed and random effects can be included in the same model by including dummy variables

- An alternative that can also be used for multiple dimensions of random effects is `xtmixed` (outside our scope)
Testing for fixed vs. random effects

• The fixed effects model always gives consistent estimates whether the data generating process is fixed or random effects, but random effects is more efficient in the latter case
• The random effects model only gives consistent estimates if the data generating process is random effects
• Intuitively, if random effects estimates are very close to fixed effects estimates, then using random effects is probably an appropriate simplification
• If the estimates are very different, then fixed effects should be used
• The Hausman test exploits this intuition

• To run it:
 • `xtreg ... , fe`
 • estimates store fixed
 • `xtreg ..., re`
 • estimates store random
 • `hausman fixed random`

• If the test statistic is large, reject the null hypothesis that random effects is an appropriate simplification

• Caution: the Hausman test has poor properties empirically and you can only run it on fixed and random effects estimates that do not include the robust option

• The `xtoverid` test (after `xtreg, fe`) should always be preferred to the Hausman test because it allows for cluster-robust standard errors